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The summation-by-parts energy norm is used to establish a new
class of high-order finite-difference technigues referred to here as
“cycto-difference’’ techniques. These techniques are constructed
cyclically from stable subelements and require no special numerical
procedures near the boundaries; when coupled with the simultane-
ous approximation term (SAT) boundary treatment, they are time
asymptotically stable for an arbitrary hyperbolic system. These tech-
nigques are similar to spectral multi-dormain technigques and are ide-
ally suited for paratlel implementation, but they do not require spe-
cial collocation points. The principal focus of this work is on methods
of sixth-order formal accuracy or less; however, these methods
could be extended in principle to any arbitrary order of ac-
curacy. © 1995 Academic Press, inc.

INTRODUCTION

A great deal of effort has recently been placed on high-order
finite-difference techniques (both central and upwind) for direct
numerical simulations. A significant issuc high-order finite-
difference schemes must address is determining stable “*near
boundary™ procedures that retain the formal accuracy of the
uderlying method. To retain the NMh-order formal accuracy of
the tnterior scheme Tor an arbitrary hyperbolic equation, (he
munerical boundaries must be closed with an accuracy ol no
less than (N — [ }th order [1]. Many high-order closures (greater
than fifth-order accuracy) cause numerical instability and can-
not be vsed (e.g., |2}). Recently, a precise means of delenmining
boundary closures that maintain both stability and accuracy has
been developed based on the summation-by-parts energy norni,
{See Refs. [3-5].) A numerical discretization that satisfies spe-
cific criteria on the discretization matrix A* automatically satis-
fies a discrete encergy norm. Central-difference schemes auto-
matically satisfy these properties in their interior. The task is,
therefore, to find high-order closure techniques at the bound-
aries that maintzin the specific form of the matrix A*. This is
a daunting task, but it can be accomplished [2-5].
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One advantage spectral techniques have that conventional
finite difference ones do not is that numerical boundary proce-
dures are not required. The global nature of the method relies
on a specilic stencil at each point. Each individual point may
be unstable, but the scheme as a whole is stable and accurate.
This notion motivates vs to develop a new class of finite-
difference schemes. Like central-difference and spectral tech-
niques, they are not biased in the direction of a physical eigen-
value and, therefore, do not require eigenvalue decomposition
when used for general hyperbolic equations. Unlike central-
difference techniques, each point has its own specific stencil.
Although individual stencils may appear to be unstable locally,
the global method is stable and accurate. Taylor series analysis
guarantees that each point has a local order property. The use
of a specific energy norm to derive the stencils guarantees that
the resulting global scheme is stable.

Implementation on parallel machines, of high-order finite-
difference techniques and single-domain spectral technigues,
can be complicated. For conventional finite-difference tech-
niques {central or upwind difference} as the order of accuracy
increases the stencil width also increases. This results in in-
creased overhead in communicating between processors. Spece-
tral element (or multi-domain) lechnigues are both cfficient and
accurale methods for implementation on parallel machines [6].
The problem is divided into several domains and each domain
is assigned to a processor. Only one point of the stencil coexists
on muitiple processors in spectral element techniques. Informa-
tion transfer between processors is kept to a minimum under
these circumstances.

Cycto-difference technigues are a combination of high-order
finite-difference techniques and spectral element techniques.
They rely on an existing energy-norm proof to establish their
stability for the hyperbolic system and require no special bound-
ary closurc stencils. These techniques can easily be split on
multi-processor environments. This flexibility results because
the discretizations are composed of many subelements that each
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HIGH-ORDER CYCLO-DIFFERENCE TECHNIQUES

satisfy an order and stability property. The subelements are
then patched together recursively such that the resulting scheme
retains the same stability properties. For parallel implementa-
tion, they can easily be broken at the patch location, which
results in a minimum of communication for an arbitrarily high-
order scheme.

SUMMATION-BY-PARTS ENERGY NORM

Stability of Continuous System

As shown in Ref. [5], the summation-by-parts energy norm
mimics, at the semidiscrete level, the continuous behavior of
the principle of the conservation of energy. Because the entire
foundation of the cyclo-difference methodology is based on
this norm, a complete derivation of the conservation of energy
principle in the continuows and the discrete case is presented.
The model problem is the hyperbolic equation defined by

ol  all _ - -

E E—O, O0=x=1,t=0, (1)
U, n=Ffmn, r=0, (2)
Ux,0) = fix), 0=x=1, (3)

We begin by defining an energy as E{f) = U2, ¢ > 0. If the
energy is differentiated with respect to time and the values
of U, from Eq. (1) are substituted, then integration over the
domain yields

1 2
E,(t):fn[—%] dv, =0, @)

The definite integral in Eq. (4) is performed to yield
E() = —[UX1, 1 — UXO, 1] (5)
and the boundary conditions are substituted from Eq. (2) to vield
E® = -G, - 0L ©

If certain properties on the boundary condition f(¢) are assumed,
the equation energy decreases for all time, For example, if
fry = 0, then the system energy decreases uniformly as energy
flows out of the domain.

Stability of Discrete System

Discrete spatial operators that satisfy very specific properties
are shown to be stable in a manner analogous to that used
in the previous proof of stability. These operators satisfy the
sunumation-by-parts energy norm. For example, given the scalar
hyperbolic equation U, + U, = 0, a general semidiscretization
can be written as U, + A*U = (), where A* is the spatial
discretization matrix that is presumably consistent to some
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order. This matrix A* can, in general, be decomposed into
the form

A* = pQ. (7

This decomposition is in general not unique. If a decomposition
can be found:

1. Symmetric P. (P = P {p; = p;»)

2. Positive definite P: (WTPW > ()

3. Nearly skew-symmetric O: (g, + g = 28,8, +
2 (SE,N(S\NJ qan)

4. g = —qu =%
then the discretization matrix A* automatically satisfies the
summation-by-parts energy norm. (See Ref. {5].)

To illustrate that this stability property results directly from
the form of the matrices P and {), a proof is presented for the
semidiscrete form defined by Egs. (1) and (2). Note that the
spatial discretization operator can be written in the form

PU, = QU; U.=PIQU, (8)

where P! exists and {/ is the vector of discrete values (I,
Uy Uny oo Uyog, Unop, Uy)T. The semidiscrete version of Eq.
(1) becomes

P%+QU=O, t=0. (9

We define the discrete energy as

E@ = {UTPLH, t=0,

{10)

where P must be positive definite to ensure that E(7) is a strictly
positive number. Eguation (10) is differentiated with respect
to time to yield the expression

al” al
=|—PU+U"P— = 0. il
E() [a: u al], (203D
Because P is symmetric (P = PT), Eq. (11) becomes
al/
Eff) _2[UTPE:|, t=0. (12)

The semidiscrete expression (Eq. (9)) is substituted into Eg.
(12) to yield

E(n =2[-UTQU], t=0. (13

By using the matrix () and the relationship between the values
¢oo and gyy, one obrains an energy of the form

E(t) = —2qulUk — UGl (14)
The boundary condition defined in Eq. (2) is substituted to yield

E() = —2quulU5% — /). (15)
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Note that the time rate of change of the discrete energy defined
in Eq. (15) 1s identical in form (to within a positive constant)
to that of the continuous case equation (5).

CYCLO-DIFFERENCING

Conventional central- and upwind-difference techniques use
one stencil for the inner portion of the spatial domain and
auxiliary formulas at the boundaries such that the resulting
scheme is stable. Spectral element techniques use orthogonal
basis functions to define local elements and then connect them
with various methods that range from spectral patching to flux
balances [7]. The simplicity and stability of the cyclo-differenc-
ing relies on a very specific property of the summation-by-
parts energy norm. Assume for a particular set of discrete points
X, J = 1, N, that a stable discretization has been isolated that
satisfies all criteria of the summation-by-parts energy norm.
The resulting semidiscretization written in matrix form is
PU, = QU, where
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Note that P is symmetric (and positive definite) and @ is skew
symmetric, except for the elements ¢, and gy, where g;; =
—gnu- Also note that the grid-spacing A has been factored out
of the matrix Q. No attempt has been made to specify the value
of the constant N. A cyclo-difference scheme is constructed by
recursively patching the stable base schemes together, which
is illustrated by the following example. Assume that the discreti-
zation involved 2N — 1 uniformly distributed points instead
of N points. We can use the properties of the matrices P and
0 (of dimension N) to define a discretization over the
2N — 1 points that satisfies all criteria of the summation-by-
parts energy norm and is therefore stable for any system of
hyperbolic equations. We define this new semidiscretization on
the equation U, + U, = O as ﬁ'ﬁ, = Qﬁ and construct it as

(=R o R e e e
[os R e R en S s B o
=T s R B B e B e}
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4NN 412 qia-1

T2 0 q2n-1
-1 T4 Y

0= % “Giw Ty T 4n-1n

0 0 0
0 0 ¢
0 0 0
0 0 0
0 0 0
. 0 0 0

where U = [U,, Uy, ... Uy_y, Uy, Uit .. Usyoa, U T7. Note
that the Jy v element is precisely zero because the contributions
from g, and gyy have equal magnitudes but opposite signs.
These new matrices £ and ( satisfy the summation-by-parts
energy norm for precisely the same reasons as the original
matrices P and (). If the matrices are assembled in this manner,
then the matrix P is symmetric and the matrix 0 is skew
symmetric except for the (1, 1) and (2N — 1, 2N — 1) elements;
these coefficients are again equai in magnitude but opposite in
sign. Because the matrix P can be decomposed into the summa-
tion of two matrices P, and P,, each of which is positive definite
(one, but not both, could be positive semidefinite), the resulting
matrix £ is positive definite. The new scheme is therefore stable
because the summation-by-parts energy norm is satisfied. In
practice, the scheme would be implemented as [, = P"Qﬁ.
The inversion of the matrix £ could in general be quite compli-
cated.

In short-hand notation, the new matrices £ and Q can be
written in terms of the original matrices # and (J as

) e-ile )

This nomenclature is not precisely correct because the new
matrix P is (2N — 1 X 2N — 1), and the original P is (N X
N). More precisely, the last row of the first matrix P and the
first row of the second matrix P lie on the same row of the
new matrix P, with the inevitable intersection of matrices at
the point pyy. For the purposes of this work, this nomenclature
will not cause any ambiguities.

Thus far in the derivation, we have assumed that the grid
spacing in the first subdomain was the same as that in the

O=1

d A
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g 0 0 0
qa.n 0 0 0
0 0 0
0 0 0
0 0 0
G- 5 0 0 0
0 42 qi4-1 q\n
iz 0 2 n-t o ’
N~ TN e 0 Gu-1x
—fiN — N “qu-LN GNN

second domain. In general, this assumption is not necessary,
which we will demonstrate, Suppose that the first interval is
discretized with a grid spacing A, and the second with a spacing
A,. The resulting semidiscretizations would be PU, = (1/A;})
QU and PU, = (1/A;) QU, respectively. Each respective discret-
ization is multiplied by the appropriate grid spacing to yield
A PU, = QU and A,PU, = QU, respectively. The two subinter-
vals are combined into one to yield the matrices £ and § of

the form
s_[ap o ] A _fo o
P—[o AZP}’ ¢ [0 Q]'

The stability of the resulting scheme is guaranteed by the sum-
mation-by-parts energy norm for any arbitrary spacing discon-
tinuity. In practice, the scheme would be implemented as
{/, = P-IQU. The inversion of the matrix # could in general
be quite complicated. All information that pertains to the dis-
continuity in spacing is incorporated into the P matrix.

This procedure of appending new subintervals onto an al-
ready existing method can be repeated recursively as many
times as desired. In fact, even two dissimilar methods {each of
which satisfies the summation-by-parts energy norm) can be
appended to one another on any arbitrary grid-spacing interval.
One constraint which the resulting cyclo-difference schemes
must satisfy, is that the total number of grid points must be of
the form N, = M(N — 1} + |, where &, is the total number of
points and M is the number of subintervals that are used. The
procedure for grid refinement, therefore, involves increasing
the number of subintervals M in the solution. {Or as in finite-
lements, one could choose higher order elements and the same
number of total grid points.)
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Boundary Conditions

We begin by distinguishing between the numerical proce-
dures which are motivated by accuracy and stability concerns,
from those required to satisfy the physical boundary condition
of the governing differential equation. Unlike conventional fi-
nite-difference schemes, cyclo-difference schemes of any order,
only consider the physical boundary conditions necessary to
satisty the partial differential equation; there are no auxiliary
stencils near the boundaries which are motivated by accuracy
or global stability.

Consider, for example, the fourth-order explicit finite-differ-
ence scheme on N + 1 uniform grids 0 = j =< N. The stencil
width is five points, centered about the point j for 2 = j =
N — 1. At grid points 0 and 1 (as weil as points N — 1 and
N) auxiliary formula must be used, becavse the interior five
point stencil invelves information from cutside the domain, To
retain the fourth-order formal accuracy of the interior scheme
for an arbitrary hyperbolic equation, the numerical boundaries
must be closed with an accuracy of no less than third-order
[1]. In this case, stable third-order closures are readily available.
In general, however, the complexity of stable and accurate
numerical boundary procedures increases with the order of
the interior scheme. For schemes of sixth-order and higher,
satisfying the stability and accuracy constraints near the bound-
aries becomes a major obstacle in using high-order finite differ-
ence schemes |2].

Cyclo-difference schemes do not sutfer from this problem.
Each element is stable and accurate, and is well-defined
throughout their domain. The boundary points 0 and & are
simply the first and last points, respectively, in the domain of
the fundamental element. The only consiraint (as mentioned
earlier) is that the total number of points be a multiple of the
element size plus one. Clearly, this argument holds for any size
clement, or order of accuracy.

The imposition of the physical boundary condition is a
delicate issue if stability and accuracy are both to be pre-
served. The cyclo-difference schemes satisfy a semi-discrete
summation-by-parts energy norm and have the special prop-
erty that the matrix P is a restricted full norm (see Strand
[4]). It was shown in Ref. [5] that schemes satisfying the
semi-discrete summation-by-parts energy norm are stable for
any constant coefficient hyperbolic system, if the physical
boundary conditions are implemented by a simultanecus-
approximation-term (SAT) treatment. The SAT procedure
simultaneously approximates (while preserving the order
property of the overall scheme) the differential equation
and the physical boundary condition at the boundary of the
domain. Because the cyclo-difference schemes have a re-
stricted full norm P, they are automatically stable for the semi-
discrete scalar hyperbolic equation, even without the SAT
boundary treatment. Details on these and other stability related
1ssues can be found elsewhere [S] and are not given in detail
in this work.

CARPENTER AND OTTO

To guarantee the accuracy of the full-discrete equations, a
special procedure was devised in reference [12] for implement-
ing the physical boundary conditions. {(True for any spatial
operator, not just cyclo-difference spatial operators.) If an ordi-
nary differential equation (ODE) is derived on the boundary
by differentiating the boundary condition with respect 1o time
and then is solved with the same time advancement scheme
used in the interior portion of the domain, then accuracy can
be proven for the constant coefficient hyperbolic system [12].

HIGH-ORDER CYCLO-DIFFERENCE SCHEMES

Second Order

We now present a variety of cyclo-difference schemes of
various order and width. In this work, we will concentrate on
schemes with uniform grid spacing within each subelement
{but not necessarily the same from element o element). The
first scheme of practical interest is the second-order scheme
defined on a subelement of three grid points. The scheme repre-
sents the optimal second-order scheme on three uniformly
spaced grid points and, in matrix notation, is given by

-3 -1
2 2 2

# = | =1 1
A 3 0 2
IS — 3

2 2 2

It is readily shown that A* = P~'Q, where

1 -3 1~
1 00 T 3 5
p={0 1 0f o= o |
00 3 Loz
8 2 8

This scheme is extended to five grid points to yield £ and O
of the form

_ B T 7
Lo 0 0 0] [2 4 £ 000
—1 1
01000 = 9 3 00
pP=|0 0 5 00 =1y F O ; F
1o o 0 1 0 00 2 o !
000 0 1 o
i 2] EECEEEE
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Because of the diagonal nature of the matrix 2, P! is easily The procedure is extended recursively to an arbitrary nomber

found; the resulting numerical scheme is

22 2 0 0]
20 L o0 0

A‘*=%—101_Tl

o 0 3 o0 !

0 0 L -2 %]
(2 2 2 0 00
2 0 1 0 0 o0
-1 0 1 FEoo
0o 0 % o ! oo
0 0 L -1 0 1
0 0 0 0
A*= 0 0 0 0 0
0 0 0 0 0 0
6 0 0 0 0 0
0O 0 0 0 0 0
0 0 0 0 0 0
0O 0 0 0 0 0
o 0 0 0 0 0

This scheme is uniformiy second-order accurate and satisfies
the summation-by-parts energy norm. In addition, the scheme
does not rely on auxiliary stencils at the boundaries. The opera-
tion count is § of the count for the conventional second-order
scheme and, as will be shown later, behaves noticeably dif-
ferent.

In general, a closed-form expression for A* will not be avail-
able because the inverse of P will not be known analytically.
Therefore, a banded or an “*LU”’ solver of width 2N — | (the
number of points in each subelement) can be used on the matrix
P to efficiently invert the matrix. Although these solvers are
efficient in comparison with full solvers, they cannot compete
with explicit schemes in which no numerical inversion of the
matrix P must be performed. The previous example demon-
strates that methods with a diagonal matrix P can be immedi-
ately inverted. By only concerning ourselves with those numeri-
cal methods that possess this property, we are being overly
restrictive. In general, if P has a first and a last row that consists
entirely of zeroes, except for the diagonal element, then each

o o o o

aj_'

=0 o o el

of subelements to yield a cyclo-difference scheme of the form

0O 0 0 0 0 0
¢ 0 0 0 0 0
0 0 0 0 0 0
0O 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 O©
0 0 0 0 0
0 0 0 0
-1t 6 1 2 0 0
0 % 0o L 0 o
o L -1 0 1 2
o 0 0 % o0 !
0o 0 0 1 -2 2 |

subelement of the resulting matrix 2 decouples and the inverse
can be performed analytically. The resulting scheme has an
explicit, not implicit, operaiion count and can compete with
conventional finite-difference schemes of comparable spatial
accuracy.

Third Order

A uniformly third-order scheme can be generated with a
minimum of four discrete points. The discretization matrix A*,
which is third order and occupies four points, can be repre-
sented as

A
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If A* is decomposed into P, the resulting relationships for P and Q are

[ A 36073 — 1172+ 21r1 —(543 =12 +9r1) 120/ + 5243371
312 78 312
3603 - 117R2+21171 200/ 3+72 41511 —(2A+55r2+51r1) 543 —-124+9r1)
312 39 312 78
P=1 _543 -2 497)) —(72/34552451rl) 207/3+7s2+1571 36073 — 1152 +2171]°
78 312 39 312
12073 + 572 + 33 71 (5473 — 2 +9rl) 36073 — 11 /2 + 21 rl a
L 312 78 312 )
[ —(28873— 12+ 971) 38413 + 372 + 2571 —(24r3— 2+ 4r1)  5T673 4372 + 135 0]
117 104 13 936
—(384r3+ 3,23 2571 0 57613 +11/2+57r1 (2483 + 2 +4r1)
104 104 13
Q= 24713+ 72+ 4rl) —(576 3 + 11 12 + 57 rl} 0 38453 + 372 + 2571
13 104 104
—(576 3 + 372 + 135 ¢1) 2413+ 2+ 47l —~(384/3+ 3242571 28843 — 12497l
I 936 13 104 117

The final criteria to be met is that the matrix P must be positive
definite. Even if this scheme was stable for arbitrary rl, r2,
and r3, the amount of work necessary to invert the matrix P
would make the scheme prohibitively expensive. Therefore,
the free parameters are used to decrease the bandwidih of the
matrix P. f weset r3 =1, r2 =93, and r! = -5 73, then
P and Q results are

[1 1 0 0] [ 2 & - 1]

15 -10 e
7o -1 s a1 = e

0 0 ! 1 B

With Gershgorin’s theorem (diagonal dominance) the matrix
P is shown to be positive definite. The original matrix satisfies

the summation-by-parts energy norm and is stable for the hyper-
bolic system. Unfortunately, not enough free parameters exist
in the decomposition to make P diagonal. The work involved
in using a cyclo-difference scheme generated from £ and Q
would be seven multiplications and additions per node: four
from the ) matrix and three from the inversion of the tridiagenal
matrix P. An operation count this high would not make the
resulting scheme competitive with other third or higher order
schemes.

To obtain high-order schemes in which P can be diagonal-
ized, or at least decoupled from the other subelements, nonopii-
mal schemes must be used. Consider, for example, the family
of uniformty third-order schemes that can be defined on five
uniform points. Because each point allows a new degree of
freedom, a wide variety of different schemes can be developed.
Assuming that the following constraints ar¢ imposed: (1) uni-
form third-order accuracy exists from five points, (2) a P and
Q exist that sarisfy the summation-by-parts energy norm, and
(3) a matrix P exists that has a first and last row composed
entirely of zeros except the diagonal element. Matrices £ and
Q result in the forms
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The characteristic polynomial of the matrix P is

(194X + 37& — 6) (15524 + 67£ — 37

[ 676-3 . . o |
1552
0 _716-22 3E410 3¢+ 10 0
388 194 388
3EHI0 18£-37 3£+ 10
— 0O — — — 0
194 388 194
0 310 3EH10 71§22 0
388 194 388
67¢— 3
0 0 0 0 1552
- -l
[ 423¢ — 45 _199¢—48 26439 23£+12  205£+ 69
6208 2328 1552 776 18624
199¢ — 48 0 79 23E+12 BE+12
2328 194 201 776
26+ 39 TE-9 o L TE-9 28439
= 1552 194 194 1552
23412 e+ 12 7¢6-9 0 199¢-48
776 291 194 2328
205£ + 69 _ 23+ 12 26+ 39 199¢ — 48 B 423£ - 45
18624 776 1552 2328 6208
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for which the roots are A =

V2788£% + 2420£ + 3225/776, A = —(67& — 3)/1552, A =

(—86& + 69

-+

—(37& — 6)/194, For values of £ < % all eigenvalues are

positive, and the method is stable. The resulting matrix A* can
(37636A* + 8342£4 — 66934 + 28847 — 893£ + 06) = 0 be written as

Ax =

[ 42345 398£-96  2£+39  46E+24 2056+ 69]
268¢— 12 2016-0 6763 67£-3  804€- 36
10459 3g+10  7£~9  $3E+18  I0E+ ]
222636 TAE—12  3E—6 2E-36  TAE-12
! 2 2 !
2 B 0 3 n
0£+1 83¢+18  T6—9 _ 3E+10 104£—9
74 12 2226—-36  37E-6  TAE— 12  2226-36
2056469 46£+24 26439 39BE— 06  423¢—dS
| 804-36  676-3  67E-3  201£-9 268 12
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Note that for a value of £ = —2 the resulting scheme is
[ 0 0 0 0 LR VR W
48 64 36 43 12 576

2 -u L A |
0 200 0 g Loz s
L P BT [
P:OO4OO,Q—4360648’
2 1 -2 —1 11
0 0 ¢ Y 5 3 = 0 3
7 —~19 ] } -1 15
00 00 % T ® O a
- -
=T
28 21 7 7 84
—11 1 -1
= 0 i 3 T
1 —2 2 -1
e T
| -1 -1 11
i 3 03 9 5
41 M
_84 7 7 21 23_

Other third-order subelements exist for a uniform grid, but
require a larger stencil. Their operation count is necessarily
Yarger than those already presented and will not be pursued in
this work.

Fourth Order

The optima! fourth-order schemes defined on five grid poinis
produce a subelement A* that can be decomposed into P and

CARPENTER AND OTTCG

© of the form
1 2 o Q0 0- _79 1 7]
2 20 —10 4
i3 3 30 g o6 2o
9 9
p:O:%g%jOO,Q= : -6 o & .

32 31
4 -0 20 12 -t = -6 (¢ 2
0 3 5 5 3 E g
7 -31 9
00 0 2 1 = ~0 2 5 3
A 3 i |

—25 _ a4 -1

BED 4 3 3 1

I R R A

4 6 2 2 12

1 -2 2 —1

Ar=1g 37 0 5§

I R

12 2 2 & 4

T _ 2%

v 3 3 48

Gershgorin’s theorem can be used to prove that the matrix
P is positive definite. The scheme satisfies all criteria of the
summation-by-parts energy norm and is, therefore, stable for
hyperbolic systems. Note that the resulting scheme is pentadia-
gonal in the matrix P and would require a banded solver in the
cyclo-difference mode to invert. The operation count of just
the £ matrix inversion would be 5N, which is not comperitive
with other explicit formulations. As the order of accuracy in-
creases with optimal formulations, the bandwidth of the matrix
P will also increase, which makes these schemes impractical.
A subelement of uniformly fourth-order schemes that is sta-
ble and explicit can be derived by considering six uniformly
distributed discrete points. One additional degree of freedom
from each point enables all of the constraints to be met. As
with the third-order subelements, a matrix P that decouples is
sought. Matrices P and  that satisfy these constraints are

_1069¢ — 228785

29668350

g

0 0 0 0
_ 10993 — 800174 48195 — 234830  4099£ - 186200  4819£ — 234830
7120404 2373468 2373468 7120404
4819¢ — 234330 933§ — 418338 2899¢ — 105150 _ 4099 — 136200
2373468 2373468 791156 2373468
_ 4099¢ — 186200 2809¢ — 105150 9733£ — 418388 4819¢ — 234830
2373468 791156 2373468 2373468
4819£ — 234830 — 40998 — 186200 48194 — 234830 10993£ — 800174
7120404 2373468 2373468 7120404
0 0 0 0

0

_ 1069¢ — 228785

29668350
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[ 3624£ ~ 442560 _35723£—2840575  29309¢ — 1476865 _3019£— 113255 130514 — 395255 1273034 — 3266195_|
24723625 71204040 35602020 3955780 35602020 1780101000
35723& — 2849575 0 _ 9680£ — 448381 11713€ — 255437 _ 5471£— 114043 13051£ — 395255
71204040 7120404 7120404 4746936 35602020
_ 29309 — 1476865 9689¢ — 448181 0 _ 5053£ — 102293 11713§ — 255437 _ 3019£— 113255
35602020 7120404 3560202 7120404 3955780
0= 3019& — 113255 _ 11713£ — 255437 5053¢ ~ 102293 0 _ 9689& — 448381 29309¢ — 1476865
3955780 7120404 3560202 7120404 35602020
_ 13051 £ — 395255 5471£— 114043 _ 11713 — 255437 9689¢ — 448381 0 _ 35723£— 2849575
35602020 4746936 7120404 7120404 71204040
127303£ — 3266195 13051£ — 395255 3019 — 113255 _29300£— 1476865  35723£ — 2849575 _ 3624£ — 442560
1780101000 35602020 3955780 35602020 71204040 24723625

The roots of the characteristic polynomial of the matrix P are

A=

~ 1069£ — 228785

29668350

2373468

_ T35551£+ 1618259 * V1105404637£% — 90611160610£ + 1935582743125

A

7120404

For values of & << —498V 1153415558857 — 1018762117/
13205747 (a numerical value of about 36.64), all eigenvalues
are positive, and the method is stable.

Fifth Order

Optimal subelements of fifth-order accuracy are not pursued
in this work. Instead, a uniformly fifth-order accurate scheme

2606250528

0

23458 + 21017188

A= —1547¢ + 145693 £V/779521£2 — 113722810¢ + 4192866925

defined on seven evenly spaced points is derived. The matrices
P and @ are defined by

0 0 4] 0 0
45759£ + 8115844 B38£4+ 58732 2217£4 85104 _2217£+ 83104 939£ + 58732
868750176 10342264 20684528 31026792 41369056
_939£+ 58732 181209&+ 628420  _ 1317£—41534 489¢ — 6587 _ 2217+ 89104
10342264 868750176 5171132 2585566 31026792
2217£ + 89104 _ 13175 — 41534 220073£ — 9105840 1317£ - 41534 2217¢+ 89104
20684528 5171132 651362632 5171132 20684528
_2217£ T RIM 4894 — 6587 _I1317£ - 41534 IB12094+ 6284320 93%4 + 58732
31026792 2585566 5171132 868750176 10342264
939¢ + 58732 _ 22176+ 89104 2217¢ + 89HM _939£+ 58732 45759 + 8115844
41369056 31026792 20084528 10342264 868730176
0 1] 0 0 0

4]

23456+ 21071388
20606250528
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186160752 8687501760 3475000704 7818751584
_ 134995¢ + 28687548 o B6205¢ — 27052 _ B225¢— 1176216
8687501760 1737500352 108593772
IL1545£+ 7615668  _ 86205£ — 27052 0 46445¢£ — 14761644
3475000704 1737500352 868730176
_31LIBSE+ 1775124 B225£— 1176216 46445¢— 14761644 0
o= 7818751584 108593772 868750176
24955£— 730068 _ 412655 7067356 2726857 — J0B60668 464454 — 14761644
868750176 579166784 3475000704 - 868750176
_ 19495£— 1005492 22155£— 2860208  _ 41265£— 7067356 8225 — 1176216
1737500352 542968860 579166784 108593772
287735€ — 19296756 194954 — 1005492 249555 — 730068 3111856+ 1775124
156375031680 1737500352 868750176 7818751584

725& + 320700
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134995¢ + 28687548

1115458+ 7615668

31LIB5E+ 1775124

The remaining portion of the  matrix can be obtained using
skew symmetry and persymmetry arguments. The matrix P is
positive definite for values of & > 164.93 . . . (determined
numerically). This uniformly fifth-order scheme satisfies the
summation-by-parts energy norm and can be used as the subele-
ment for generating a cyclo-difference scheme. The resulting
scheme will be explicit in nature because the matrix 2 can be
inverted analytically.

This basic procedure can be used to generate schemes of
arbitrarily high order, although none with an accuracy of greater
the fifth order was generated in this work. For accuracies sixth-
order and greater, the analytic values of the coefficient may
exceed the precision of 64-bit arithmetic, and round-off error
becomes important. In addition, the wisdom of approximating
an arbitrary function on a uniform grid with extremely high
order polynomials becomes questionable.

Finally, a comment about the extension of cyclo-difference
schemes to multi-dimensions. Cyclo-difference schemes are
extended to multi-dimensions in the same fashion as any con-
ventional finite-difference scheme on a structured grid. The
derivative operators in the coordinate directions j are formed
sequentially as P;'Q;.

STABILITY OF THE CYCLO-DIFFERENCE SCHEMES

The summation-by-parts energy norm was used to develop
the cyclo-difference schemes in a semidiscrete context. The
theoretical CFL for various Runge—Kutta (R-K} schemes must
still be determined. Because each point in a cyclo-difference
scheme uses a different stencil, the use of Fourier techniques
to obtain a CFL is not applicable. A numerically determined
eigenvalue spectrum provides a practical means of obtaining
the CFL of the various schemes.

For time asymptotic stability, all eigenvalues of the spatial
discretization operator (scaled by Ar) must lie within the stabil-
ity region of the time integration formula for all Az = Ar,,.:
the maximum stable A¢ This condition guarantees that the
solution in time will remain bounded if the solution to the
original governing equation is bounded. The determination of

the CFL of a discretization is thus reduced o sclving for Az,
such that the resulting stability region of the time integration
formula encompasses all spatial eigenvalues.

Figure 1 shows the eigenvalue spectrum of the cyclo-differ-
ence schemes as determined from a numerical eigenvalue deter-
mination. For each case, the number of grid points is 61; this
number satisfies the grid constraints for all cyclo-difference
schemes presented thus far. Note that the structure of the spec-
trum is not continuous, but it seems to cluster into specific
portions of the complex plane as for conventional finite-differ-
ence techniques. (See Ref. [2].) In addition, this clustering
becomes more pronounced as the order of accuracy increases.

Table I shows the CFLs of the various schemes determined
from a numerical eigenvalue determination. In all cases, the
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TABLE 1

CFL of Cyclo-Difference Schemes Determined
from Eigenvalue Determination

CFL
(R-K)
order Cyc23 Cye3s Cycdf Cye57
2nd Unstable Unstable Unstable Unstable
3rd 1.16 1.23 1.08 0.87
4th 1.89 2.01 1.77 1.42

grid used contained 61 points. Very little sensitivity to grid
density was observed between 31 and 61 grid points. The four
algorithms used in the study were: (1) cyc23; (2) cye35; (3)
cycd6; (4) cyc57. The first number indicates the formal accuracy
of the scheme; the last number is the number of grid points
occupied by the subelement stencil. The cyclo-difference
schemes are then generated by recursively appending the sub-
elements. Note that each scheme can only run on a grid of
M(N — 1) + | points, where N is the element size and M is
the number of elements. Note that in each spatial operator, the
fourth-order R-K is more efficient (in terms of CPU time, rather
than storage) than the third-order R-K to advance the solution
in time,

ACCURACY OF CYCLO-DIFFERENCE SCHEMES

Numerical Dispersion

The numerical dispersion of a conventional scheme can be
quantified by comparing the Fourier image of the derivative
operator with the image obtained by exact differentiation. For
example, the Fourier image of the second-order central deriva-
tive operator u, = (uy, — #)W28x 1s i sin(k), while exact
differentiation yields ik. Plotting the approximate result k' =
sin k as a function of & shows in wave space the error committed
by the numerical approximation for each Fourier mode. This
analysis is valid on periodic domains, with identical stencils
throughout, and provides a good approximation for the finite
domain problem where identical stencils are not possible. For
more detailed results, numerical techniques must be used for
nonperiodic domains, with near-boundary stencils.

Figure 2 shows the numerical dispersion of three conven-
tional schemes (with various boundary conditions) on a finite
domain. The numerical schemes analyzed are: second-order
central difference with first-order boundary conditions,
(1-2-1); fourth-order compact with third-order boundary condi-
tions, (3-4-3); and sixth-order compact with third-, fourth-, and
fifth-order boundary conditions, (3, 4-6-4, 3), (4, 4-6-4, 4), and
(5, 5-6-5, 5), respectively. (See Carpenter et al. [2] for specific
details). To generate the discrete spectrum, a function composed
of an individual Fourier mode was numerically differentiated.
The resulting derivative function was Fourier analyzed, and the
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DISPERSION SPECTRUM [CONVENTIONAL FD]}
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FIG. 2. Numerically determined dispersion spectrum of three conventional
finite-difference schemes.

value of the £ mode was assigned to be &'. In all cases, 241
grid points supporting 121 Fourier modes were used. The sec-
ond- and fourth-order cases are indistinguishable on the plot
from the corresponding periodic case. Note, however, the ef-
fects of the numerical boundary conditions on the sixth-order
case.

The cyclo-difference schemes are not amenable to conven-
tional Fourier dispersion analysis because a different stencil is
used at each grid point. Figure 3 shows the numerical dispersion
of the cye35 scheme as a function of the independent parameter
& Only values of £ for which the resulting scheme is numeri-
cally stable are studied. Note that the dispersion appears to be
minimal near the value £ = —}. The numerical error: [k — k',
for ¢ = —4, does not exceed 1077 over the range 0 < k£ < 3.
Figures 4 and 5 show the discrete dispersion spectrum of the
cycd6 and cyc57 schemes, again plotted as a function of the
independent parameter £ The erratic high wave number behav-
ior of the cyclo schemes appears to increase with increasing
accuracy. The exact cause of this behavior is unknown, but it
could be related to the * ‘Runge’” phenomena seen in polynomial
approximation theory on uniform grids [8]. Comparing Figs.
3 and 4, note that the cyc35 scheme has high wave number
resolution which is comparable with the (3-4-3} scheme, mak-
ing it a candidate for simulations which are not well grid-
resolved. Conversely, the cyc57 scheme is not a good candidate
for calculations which do not have eight grid points per wave-
length.

Finally, we note that the inherent dissipation in the cyclo-
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FiG. 3. Numerically determined dispersion spectrum of cyclo35 scheme,

as a function of parameter £.

difference schemes comes from the temporal advancement
scheme. Semi-discrete schemes which satisfy the summation-
by-parts energy norm are neutrally dissipative in the P norm.
{The eigenvalues are purely imaginary in the infinite and peri-
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FIG. 5. Numerically determined dispersion spectrum of cyclo57 scheme,
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odic cases). Runge—Kutta time advancement will introduce a
modest amount of dissipation to the fully discrete equations.

Time Dependent

Several test problems (both steady and unsteady) are used to
establish the accuracy of the cyclo-difference schemes. Because
Taylor series analysis was used in all cases to derive the schemes
of a particular order, these schemes are expected to behave
with at least the order of the local truncation error. Consider
the method-of-lines approximation to the scalar wave equation

aU . aU
—+—= —l=x=l1=
S —o=0, —l=x=1r20, (16)
U, —1) = sin 2r(—1 — £); U(0, x) = sin 2mx,
(17)

—l=x=1t=0,

with the exact solutions given by

Ut x)y =sin27(x — 1), —1=x=1+t=0 (I8)

The spatial discretization is accomplished by the new cyclo-
o difference schemes of various order; time was advanced with
a four-stage R-K time-advancement scheme (formal nonlinear
accuracy of fourth order) with a CFL of 0.25 to a time level
of 25. Further temporal refinement showed no improvement in

FIG. 4. Numerically determined dispersion spectrum of cyclod6 scheme,
the solution accuracy.

as a function of parameter &
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Uniform Mesh

We begin with a discretization on a uniform mesh. Table 11
shows the results from a grid-refinement study performed with
each algorithm. Plotted is the log L, error as a function of the
grid density, where L, = VZ,(g)/N with g; being the error at
gridpoint j.

Once a scheme has achieved a certain minimumn grid density
it will exhibit an order property; by doubling the mesh, the
error will decrease by a factor of 2%, where k is the order of
the scheme. The slopes for each scheme, as determined between
grid densities of 31 (37 for cyc57) and 121 points, were —2.05,
~4.05, —4.45, and —6.10, respectively.

Note that the apparent accuracy of some of the cyclo-differ-
ence schemes s higher than the predicted local truncation error.
This result is more apparent in the schemes with an odd order,
namely the cyc35 and the cye57. The cyc46 does not obtain
an accuracy that is significantly greater than the theoretical
accuracy. Borrowing from the finite-element terminology, this
increased convergence rate shall be referred to as *‘superconver-
gence.”’

Discontinuous Mesh

We noted earlier in the derivation of the underlying principles
of cyclo-differencing that two subintervais of unequal spacing
could be joined at an interface without destroying the accuracy
or stability of the formulation. The discretization matrices P
and O were defined by

A l:AIP 0 ] . [Q 0]
P = y 0= .
0 AP 0 0

TABLE 1I

Accuracy of New Cyclo-Difference Schemes as Function
of Grid Density

log L,
Gnid Cyc23 Cyc35 Cycd6 Cyc57
16 —1.347
17 —{.7378
19 —1.530
21 -1.662 —0.6959 —1.740
25 —1.625 —2.059
29 —-2.066
31 —2.083 —2.276 —2.760
33 —2.218
37 —3.273
4] —2.587 —2.722
6l —2.71¢ -3.521 —3.736 —~4.620
81 —-3914 —4.249
91 —4.455 —5.678
101 —4.248 —4.638
121 —3.316 —4.547 —4.956 —6.435
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TABLE TII(a)

Accuracy of cye35-Difference Scheme for Discontinuous Mesh
Spacing as a Function of Grid Density

log L,

Grid p=1 p =132 p=73 p=73
41 —2.587 —2.469 —1.864 —1.849
81 -3914 —3.715 -3.197 -3.123
121 —4.547 —4.521 —3.974 -3.915
161 —5.046 —5.052 —4,559 —4.315

Table III{a) shows the results of a grid-refinement study for
which the ratio of grid spacings between subintervals was not
one (A1/A2 # 1). The model problem was that used in the
previous test case (Egs. (16) to (18)), and the spatial discretiza-
tion was the cyc35 algorithm. Time advancement was as pre-
viously described. In each case, the spatial domain was divided
into two regions, and one half of the total number of points
was distributed uniformly throughout each domain. This gave
rise to grid spacings Al and A2 in each domain, respectively.
Table I11(a) shows the loganthm of the I, error for each discreti-
zation as a function of grid density, for a variety of spacing
ratios p = Al/A2. In all cases, the finest concentration of mesh
points occurred at the outflow boundary.

The magnitude of the error increases as the mesh discontinu-
ity increases. This is because of the increased effective grid
density that results from clustering the mesh points near the
outflow boundary. The scheme still behaves with a fourth-order
accuracy on this problem. Note that the slope of error decay
for the p = 5 case is —3.96 between ¥ = 81 and N = 161
and that the cyc35 scheme is still superconvergent.

Table ITI(b) shows a similar comparison with the other cyclo-
difference algorithms; all cases were run with a grid ratio of
p = 5. The slope of the error decay in the cyc57 scheme
between points 61 and 121 is —5.82. The odd-order schemes,
even in this discontinuous case, appear to be superconvergent.

TABLE III(b)

Accuracy of Cyclo-Difference Scheines for Discontinuous Mesh
Spacing (p = 5) as a Function of Grid Density

log L,
Grid cye35 cycdé cyc57
41 —1.849 -2.317
61 —3.251
81 —3.123 —=3.279
97 —4.449
121 -3.915 —3.983 —5.004
161 —4.315 —4.476
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Long-Time Calculations

Stencils that abruptly change, such as at a boundary interface,
can cause spurious reflection at the interface [9]. The reflections
behave according to the order property of the scheme, but
they can be significant for moderate resolviions. The cyclo-
difference methods are composed of numerous interface
paiches, each of which exhibits numerical reflection. It is rea-
sonable to question whether the quality of the numerical solu-
tion is adversely affected by the refections over long integration
times. To test this hypothesis, Eq. (16} is modified to the form

WL _ 0, p=x=480,1=0, (19)
at dx
Ui 0) = e (—mz =1\,
: 5 eXp 3 )
1 x\?
U, x)= 2exp (— In2 (5) )
0=x=4R0,t=0Q, 0]

with the exact solutions given by

x—

2
U(t,x)=%exp(—ln2( )) 0=x480,120. (21)

Equations {19) through (20) were solved with the five-stage
fourth-order 2N-storage Runge—Kufta scheme (RK54) [11].
The cyclo-difference operators used were the cyc35, cycd6,
and cyc37 schemes, each which was run at two different values
of the parameter £ The conventional spatial operators used were
the fourth-order explicit, sixth-order compact spatial opetators
described in detail in Ref. [2], and the eighth-order compact
operator described in reference [10]. The physical boundary
condition was imposed by solving the differentiated boundary
condition on the boundary with the RK34 procedure. This tech-
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nique was shown by Carpenter et al. [12] to vield a fourth-
order temporally accurate procedure. Specifically, the boundary
condition is 4°u(0, 1)/dr’ = g"(r), where g 1s the physical bound-
ary condition at the inflow plane.

Table IV shows the results of a refinement study comparing
the cyclo-difference schemes with conventional finite-differ-
ence schemes. All schemes are compared on three grids and
integrated to times of 7 = 50 and T = 400, respectively,
The grids were chosen to be extremely coarse for this study:
approximately three, six, and twelve grid points per width of
the Gaussian initial condition. None of the numerical methods
achieves its asymptotic accuracy on the coarsest grid. The inter-
mediate grid provides a good indicator of the coarse resolution
capabilities of the methods. The order property of each scheme
can be determined by comparing the results from the intermedi-
ate and fine gnids.

For long time integrations on coarse grids, the cyc35 scheme
is as accurate as the conventional fourth-order finite-difference
scheme, while the cycd6 scheme is marginally more accurate.
Little improvement (in spite of the additional cost) is achieved
with the ¢yc57 scheme on these extremely coarse grids. Ad-
justing the value of £ produced little change in the accuracy of
the solution. These results are in good agreement with the
numerical dispersion analysis presented earlier for each scheme.

Steady State

The second test problem is the solution of the flow through
a supersonic nozzle, The governing equations are the quasi-
one-dimensional Euler equations. For titis problem, an exact
steady-state solution exists and can be used to compare the
accuracy of the new cyclo-difference methods. The previously
presented stability proof for the cyclo-difference scheme is only
valid for the constant coefficient hyperbolic system. For the
non-linear hyperbolic system there is no guarantee that stability
will be achieved. Other numerical methods (without nonlinear
stability proofs) are stable, however, and it is reasonable to

TABLE IV

Grid Refinement Study to T = 50,400 at CFL = 2

% with RK34 Time Advancement Scheme

Cyclo 35 Cyclo 46 Cyclo 57
T =50 343 £= %1 £= :JLO £=10 £=130 £= 200 £ = 1000 5-6-5 7-8-7
241 ~1.68 -1.65 ~1.79 -1.71 —L.70 -1.82 —-1.70 —-1.57 —1.82
481 —2.44 -2.27 -2.11 -2.68 —~2.60 -2.51 —2.44 ~3.14 ~3.05
961 —~359 -3.42 —-3.65 -3.62 ~3.68 -3.75 -3.77 ~520 -5.31
T = 400
241 -1.43 —1.42 —142 --1.57 -1.58 —1.43 —143 —146 —-1.81
481 -1.83 -1.75 —185 -2.07 -2.07 -1.89 —-1.86 —-3.06 —-3.04
961 -27 —2.35 -3.03 ~275 -2.31 -3m —2.39 —-525 —~531

Note. Plotted is the log L, error.
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expect a robust numerical method to be stable. The governing
equations are

3 9 B
E(M)WL—a;(PMA)—O

9 9 roa )
at(puAH P [ +pA] = p (22}

dx

? & B
— (peA) + [(pe, + p)uA] =0,

where A = A(x) and e, = CvT + %2, Boundary conditions
are imposed on the inflow plane for all three equations, and
A(x) is prescribed such that the flow remains supersonic
throughout the entire domain. A four- and a five-stage R-K
were used to time advance the solution to the steady state
(machine precision of 107"%). Residual smoothing was used to
accelerate the convergence rate for the various schemes, Table
V shows a comparison of the L, error that resulted from each
of the four cyclo-difference schemes on various grids.

Note that by doubling the mesh, an error decay is produced
with a slope of —2.00, —4.00, —4.29, and —6.00, respectively.
These slopes agree with those obtained in the time-dependent
case for simple lincar advection. Again we see that the odd-
ordered schemes are superconvergent.

Nate that conventional second-order methods (as well as
higher order central methods) with suitable boundary conditions
will not converge to steady state for this and many other practi-
cal flow problems. The residual decreases only one order and
then remains at this point indefinitely. This non-convergence
is because the interior scheme is entirely dispersive; thus, the
only dissipation in the spatial scheme comes from the boundary
closure terms, which generally are not sufficient to damp the
high frequency modes that can develop under non-linear cir-
cumstances. Higher order damping is explicitly added to these
central-difference schemes to ensure that a steady-state solution
can be found. The cyclo-difference schemes, by virtue of their
cellular construction, can be used without additional damping.
In practice, additional damping makes the scheme converge
more rapidly, as expected.

TABLE V

Accuracy of Cyclo-Difference Schemes as Functions of Grid
Density for One-Dimensional Nozzle Flow

log L,
Grid Cyc23 Cycds Cycd6 Cycs7
121 —4.122 —5.450 —6.410 -6.851
181 —4.474 —6.153 —T.178 -7916
241 —4.723 —6.653 —=7.703 —8.666
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CONCLUSIONS

A new methodology referred to as “‘cyclo-differencing™ is
presented for defining stable high-order finite-difference
schemes. They are similar to spectral element techniques of
some arbitrary order, and are ideally suited for implementasion
on parallel machines. Unlike spectral element techniques, their
existence does not rely on orthogonal polynomials or nonuni-
forma grids. In principle, they can be devised of any order
accuracy, although only schemes of sixth-order accuracy are
pursued in this work. These new techniques rely on the summa-
tion-by-parts energy norm to establish formal stability for the
scalar hyperbolic case. In addition, if the newly devised SAT
method for imposing boundary conditions is used in conjunction
with cyclo-differencing, then the resulting numerical method
is formally stable for the hyperbolic system,

The cyclo-difference techniques are similar to central-differ-
ence technigues in that they are stable for right- or left-running
waves, with appropriate placement of the physical boundary
conditions. A decided advantage is that no numerical boundary
conditions are required near the walls. Thus, high-order accu-
racy is assured throughout the entire domain. In addition, the
cyclo-difference schemes can be patched together across arbi-
trary grid discontinuities and still retain their accuracy and sta-
bility.

A senies of test problems are used to demonstrate the efficacy
of the cyclo-difference methodology. The scalar advection
equation is used to show the formal stability and accuracy of
the second- to fifth-order cyclo-difference schemes. For the
odd-order cyclo-difference schemes, the property of supercon-
vergence is observed; specifically, these schemes converge at
a rate one order higher than their theoretical accuracy on both
uniform and discontinuous grids. A one-dimensional nozzle
problem 1s used to demonstrate the robustness of the cyclo-
difference techniques. Steady-state solutions, consistent with
the order property of the spatial operator, are obtained without
the addition of artificial damping to the formulations. Finally,
the viscous Burgers equation is solved to demonstrale the use
of the cyclo-difference technique for a nonlinear parabolic prob-
lem. Again, robust and accurate solutions are obtained in all
cases,

APPENDIX A

Viscous Stability

Assume P(aU/ox) = QU, where P and { are matrix operators
and U is a vector of discrete values. The proof of stability for
the cyclo-difference scheme developed in this work relies on
very specific forms for the matrices P and . Specifically,
P = PT and is positive definite; @ = Q,, + Q,, where the
only nonzero elements of Qy are gpg and gyy. and gog =
—guy = —o; (@ > 0). This form of the derivative operator
leads directly to a stable second-derivative operator. We begin



258

with a derivation of the continuous energy for the one-dimen-
sional heat equation,

al U

_('iTz ada—xz-, O0=x=1,r=0,
Uo,n=7f0; Ul.H=g® {A.1)
Ux,0) =dix), 0=x=1.

Note that boundary conditions based on the derivatives at x =
0 or x = 1 could have been imposed. An energy (defined as
$U?) is formed by mwltiplying Eq. (A.1) by U. Integration over
the domain results in

o M) .
E(n= jﬂ [— ot/ Py } dx, t=0. (A.2)
Integration by parts yields an expression of the form
Er(f) = ad[U(lv t)Ux(ls r) - U(09 I)U.x(oa f)]
(A3)

v [8UN?
_Joad(a) dx, 1=10.

The energy takes the form of a negative definite quantity plus
the boundary data that involve the function and its derivatives
at the boundaries.

If the second derivative in Eg. (A.1) is formed by twice
operating with the first derivative operator, the semidiscrete
form of Eg. (A.1) becomes

2~ apopigu,

t=0. (Ad)

i P is symmetric (P = P') and is positive definite, then P’
is symmetric and positive definite. Similarly, because Q =
Qum T Qg. we have § = 20, — (. By operating on Eq.
(A.4) from the left by U"P and using the relationships between
¢ and Q7, we obtain
E(n = a2U°QL.P'QU — U'Q"PT'QU], =0, (A.5)
where E, is the time rate of change of the discrete energy defined
by E{ry = UTPU. In defining V = QU, the second term on the
right side of Eq. (A.5) is negative definite. Because of the
sparseness of the matrix Qf,, the first term reduces to «
[ ax)(1y — UONAL/ax)0)] and Eq. (A.5) becomes

E{1) =
oy [(U(l, r)%](l, H— U, t)%((), 1‘)) - VTP"V],

t=0 (A6)
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This expression for the discrete energy is identical to that ob-
tained from the continuous case. Therefore, the discrete energy
will behave like the continuous energy. However, note that this
analysis is linear and does not guarantee stability in some
problems of practical interest. For example, the same argument
could have been used to demonstrate the stability of forming
U/, from two central-difference first derivatives. In fact, if U,
is formed in this manner, no damping would result for the 7
mode in Fourier space, which ultimately would result in the
growth of the odd-even mode in physical space for uaresolved
nonlinear calculations.

The cyclo-difference schemes do not appear to be as suscepti-
ble to the odd-even mode instability as the conventional cen-
trai-difference schemes because a different stencil is used at
each point. For example, consider the cyc35 scheme with the
parameter § = —I. The resulting subelement A* = P7'Q is

-

2 ¥ -4 2 ]
F 3 1 30
ax={3 ¥ 0 % 3
0 -1 % g
|5 24

By forming the viscous derivative by the sequential operation
of the first derivative operator A, = A*A*, we obtain

3 -9 10 -5 1
1 -2 1 0 0

A=|0 1 -2 1 o0
0 0 1 -21
1 =5 10 -9 3

The interior of this matrix is identical to the conveniional sec-
ond-order viscous derivative and is not susceptible (o the odd-
even mode. Truncation analysis shows the resulting viscous
matrix to be uniformly second order. Numerical Fourier analy-
sis on the viscous eguations indicates that the “*7’” mode is
modestly damped for practical grid densities.

To test the convergence rate of the viscous terms and the
overall influence of the odd—even mode, the viscous Burgers
equation is used. The equation is defined by U, + (0.5U7), =
plU,, with boundary conditions U(0, 1) =U, and U(l, 1) = 0.
The exact steady-state solution is given by

U = U [1 — exp URe(x - 1)]’

1 +exp URe(x — 1}



HIGH-ORDER CYCLO-DIFFERENCE TECHNIQUES

TABLE A.I

Error from Various Cyclo-Difference Schemes
on the Steady-State Burgers Equation

Grid Fourth Cyc35 Cyed6 Cye37
51 ~2.009 -3.547
53 —3.405
53 —2.975
101 —3.408 ~4.663 —4.496
103 -4719
am —4.879 ~5.882 —6.233
205 —6.807
401 —6.369 ~7.087 —17.561
403 —8.596

where Re = Uy/u and U is the solution of the equation

-1 _
Trl exp(—{/ Re}

i<l

and can be used to determine the error on a particular grid for
this problem. Table A.I shows the results of a grid-refinement
study on the viscous Burgers equation.

The log, of the L, error are plotted as a function of the grid
density. The convergence rate for the fourth, cyc35, cycd6,
and cyc57 methods are 4.9, 4.0, 5.1, and 6.5, respectively, as
determined between the 101 and 401 points. The viscosity was
¢ = 0.04 which results in Re = 25,

APPENDIX B

Periodic Stability

At least two cycles of the fundamental subelement are re-
quired to define a cyclo-difference scheme (which inciudes two
boundaries and one patch). Schemes of greater grid density can
be eonstructed by cyclically patching an arbitrary number of
subelements together. The cyclo-difference schemes can be
used, however, on a periodic domain. By construction, we will
show how to generate a stable periodic scheme from any of
the cyclo-difference schemes,

The periodic assumption is implemented by first requiring
that grid points 1 and N are equivalent. Hence, the last row
and column from the cyclo-difference scheme can be elimi-
nated. (With this requirement, the minimum number of subele-
menis required for the periodic case is three,) If points 1 and
N are equivalent, then the stenciis that require grid point N are
“‘wrapped around’’ to point 1. Similarly, the stencil at point 1
is replaced with the interface stencil symmetrically relates
points on either side of grid point 1. The resulting cyclo-differ-
ence stencil is now periodic, and each subelement is indistin-
guishable in terms of position. Unlike conventional central-
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difference schemes, the resulting stencil is not skew symmetric.
The eigenvalues of the stencii are all on the imaginary axis
because A, = P, '(Q,, and @, is entirely skew symimetric.

The periodic versions of the cyc23 and cyc35 schemes are
presented to illustrate this procedure. The periodic cyc23
scheme with three subelements (seven points) and truncated to
six points, can be written as

o 1 o0 L -1
20 4 o0 0 0
-1 0 1 3o
A__:
1o o 2 o ! 0
20 L -1 0 1
|1 0 0 0 3 0]

The matrix A, = P;'(Q,, where P is the diagonal matrix charac-
terized by [4, L. 4, 1, 4, 1] on the main diagonal; Q, is entirely
skew symmetric. By definition, we know that a skew symmetric
matrix has eigenvalues on the imaginary axis. The semidiscrete
energy of the system defined by U'P,U will be unchanged for
all time with this discretization.

A comparison of the eigenvalues for this discretization with
those of the conventional second-order periodic central-differ-
ence stencil on six points is interesting. The characteristic
polynomial for the matrix A, is A2(16A* + 51A* + 36) = 0,
which results in the eigenvalues A = 0 and A =
+ V332 V1T + \/331' for which the maximum eigenvalue is
*1.46024. The conventional periodic second-order scheme
produces a characteristic polynomial A((4A* + 3)* = 0 for
which the maximum eigenvalue is V' 3/4i. These eigenvalues
are distinctly different; the effective CFL will be smaller for
the cyc23 than for the conventional second-order scheme.

For simplicity, the diagonal form of the cyc35 scheme (£ =
~%) will be used to illustrate the periodic form of the operator.
The subelement As takes the form

R R B B

2% 1 7 7 %

-1 g 1 1 bl

24 1 3 3

) 2 2 -1

A= u 3 0 3 12

1 -1 -1 1

[ EY 0 3

-1 4 1 4
07 7 a2

Three subelements are used, and the resulting scheme is reduced
by one row and column, which yields a matrix A, of the form
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0 22 2 5 o
% 9 i 5 5 0
s 0 3 7 O
i o3 7 0 o5 0
% o ow "% 0 F
o 0 0 0 % 0

=1 0 0 0 o L =z
o 00 o 2
%000—%%
2 00 0 o0 0
200 0 0 0
|1 0 0 0 0 0

The matrix A, = P;'Q,, where P is the diagonal matrix
characterized by [2, 2,4, 2,2, 2,12, 2,3 3 1 2 on the main
diagonal and @, is entirely skew symmetric. The semidiscrete
energy of the system defined by UTP,U will be unchanged for
all time with this discretization and is, therefore, stable when
advanced with a stable time-advancement scheme. The charac-
teristic polynomial for the matrix A, is x* (x* + 2) (9408x® +
23545x° + 18219x* + 4302x% + 243) = 0. The roots of this
polynomial are strictly imaginary and are bounded by the points
+V/2i. Because the cyc35 scheme exhibits superconvergence
properties, it can be compared with the conventional periodic
fourth-order central difference expression defined on 12 grid
points. The characteristic polynomial for the central difference
case is xi(9x? + 16)(16x2 + 27)(48x* + 49(20736x* +
19206x7 + 3721} = 0. All roots are imaginary and are bounded
by the points *+3. Again, note that the ¢yc35 scheme has a
slightly more restrictive CFL than the conventional central-
difference method on 12 points.
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